
CS 4530: Fundamentals of Software Engineering
Module 1.2: Capturing User Requirements

Jon Bell, Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

1

© 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson
• At the end of this lesson, you should be able to

• Explain the overall purposes of requirements analysis
• Enumerate and explain 3 major dimensions of risk in Requirements Analysis
• Explain the difference between functional and non-functional requirements,

and give examples of each
• Explain the notion of a user story, with examples. (including conditions of

satisfaction)

2

Overall question:
How to make sure we are building the right thing

3

Requirements
Analysis

Planning &
Design Implementation

Why is requirements analysis hard?

Problems of
understanding

Do users know what they want?

Do users know what we don’t know?

Do we know who are users even are?

Problems of scope
What are we building?

What non-functional quality attributes
are included?

Problems of volatility Changing requirements over time

4

Soliciting
Requirements
Option 1: Users tell developers what
they want

• Client determines the
problem and the solution

• Requirements might be
formally provided in the form
of a contract or statement of
work

• Client might provide all
requirements, or just some
subset (e.g. “must be HIPAA
compliant”)

5

Soliciting
Requirements

Option 2: The developers try to figure out what the user really wants
or needs.
• Interview users, ask questions about their problems, propose

potential solutions, examine those solutions
• Embed your client in your design team, or better yet, become an

anthropologist in your client’s environment
• Build requirements documents that demonstrate your

understanding of the requirements, iterate
• Empowers your team with credibility and authority 6

Always need to
document the
requirements

• Documentation helps our whole
team make sure they are building
the right thing

• Documentation can help specify
implicit requirements

• Documentation can also serve as
an artifact to iterate on with a
client

7

Documentation should also capture non-
functional requirements
• Qualities that reflect the execution of the system

• Accessibility
• Availability
• Capacity
• Efficiency
• Performance
• Privacy
• Response Time
• Security
• Supportability
• Usability

• Example: “A 4-core server with 16 GB RAM should be able to service at
least 200 simultaneous clients with less than 300ms latency”

8

Documentation should also capture non-
functional requirements (2)
• Qualities that reflect the evolution of the system

• Testability
• Maintainability
• Extensibility
• Scalability

• Example: “A 3rd party component built conforming to the API defined
in the Canvas LMS specification can create, modify, and delete
assignments on behalf of an authenticated user”

9

Formal Specifications is
one way to document
the requirements

• Define all expected behaviors under all
expected conditions

• Works best when domain is well-
understood

10

User Stories document requirements from a
user’s point of view

11

As a <role> I can <capability>,
so that <receive benefit>

Specifying what should happen, for whom, and why

Conditions of Satisfaction:
Given <interaction with software,
state of environment>, I expect
<behavior and side effects>

Writing User Stories: INVEST
• Independent
• Negotiable
• Valuable (has value to client)
• Estimatable
• Small
• Testable

12

As a <role> I can <capability>,
so that <receive benefit>

Example: a Transcript database
User Story
• User story: tells what the user wants to do, and

why.
• Example:

13

As a College Administrator, I want a
database to keep track of students, the
courses they have taken, and the grades
they received in those courses, so that I
can advise them on their studies.

• Satisfaction Conditions list the capabilities the user
expects, in the user’s terms.

• Example:

14

My database should allow me to do the
following:
• Add a new student to the database
• Add a new student with the same name as an

existing student.
• Retrieve the transcript for a student
• Delete a student from the database
• Add a new grade for an existing student
• Find out the grade that a student got in a course

that they took

Satisfaction Conditions

User Stories may be Prioritized
• Essential means the project is useless without it.
• Desirable means the project is less usable without it, but is still

usable.
• Extension describes a User story or COS that is desirable, but may not

be achievable within the scope of the project.

• Minimum Viable Product (MVP)

15

• A brief tutorial can be found on course website!

Non-Functional Requirements:

16

• What other properties might a customer want to know about
the product?

• How quickly can a transcript be retrieval? (Performance)
• How many student transcripts can our system store? (Scalability)
• How long did I spend on the phone with support to set up the

software? (Usability)
• After my system is setup, is the access controlled at all? (Security)
• Are these any times when I can’t use this system? (Availability)

Requirements: Which to pick?

17

• There are four knobs you can adjust when negotiating requirements:
• Project scope
• Project duration
• Project quality
• Project cost

• Usually cost is most constrained: you have a budget to spend, and you
have a headcount of developers to pay

• Determining feasible scope, timeline and maximizing quality is the
subject of much software engineering research, see next lesson

Learning Goals for this Lesson
• At the end of this lesson, you should be able to

• Explain the overall purposes of requirements analysis
• Enumerate and explain 3 major dimensions of risk in Requirements Analysis
• Explain the difference between functional and non-functional requirements,

and give examples of each
• Explain the notion of a user story, with examples. (including conditions of

satisfaction)

18

	CS 4530: Fundamentals of Software Engineering�Module 1.2: Capturing User Requirements
	Learning Goals for this Lesson
	Overall question:�How to make sure we are building the right thing
	Why is requirements analysis hard?
	Soliciting Requirements
	Soliciting Requirements
	Always need to document the requirements
	Documentation should also capture non-functional requirements
	Documentation should also capture non-functional requirements (2)
	Formal Specifications is one way to document the requirements
	User Stories document requirements from a user’s point of view
	Writing User Stories: INVEST
	Example: a Transcript database�User Story
	Satisfaction Conditions
	User Stories may be Prioritized
	Non-Functional Requirements:
	Requirements: Which to pick?
	Learning Goals for this Lesson

